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Outline
• Review last class and homework
• Midterm Exam November 15 covers 

material on differential equations and 
Laplace transforms (no phase plots)

• Overview of numerical solutions
– Initial value problems in first-order 

equations
– Systems of first order equations and initial 

value problems in higher order equations
– Boundary value problems
– Stiff systems and eigenvalues
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Newton Polynomials

• p(x) = a0 + a1(x – x0) + a2(x – x0)(x – x1) 
+ a3(x – x0)(x – x1)(x – x2) + … + an-1(x –
x0)(x – x1)(x – x2) … (x – xn-2)

• Terms with factors of x – xi are zero 
when x = xi

– Use this and rule that p(xi) = yi to find ai

– a0 = y0, a1 = (y1 – y0) / (x1 – x0), etc.

• Coefficients can be obtained from 
divided difference table 
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Divided Difference Example
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Constant Step Size

• Divided differences work for equal or 
unequal step size in x

• For constant step size we can use an 
alternative formulation involving forward 
or backward differences
– yk = (yk+1 – yk)/h

– 2yk = (yk+2 – 2yk-1 + yk)

– 3yk = (yk+3 – 3yk+2 + 3yk+1 – yk)
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Polynomial Interpolation

• Data interpolation only if points are 
exact, use statistical fits otherwise

• Use piecewise curve fits to large 
number of data points (e.g. cubic 
splines)

• Interpolation used for other numerical 
methods, quadrature, differential 
equations, finite element basis 
functions, derivative expressions
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Truncation Error

• If we truncate series after m terms
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• Truncation error as single term at 
unknown location
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• Derive finite-differences for derivatives
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Derivatives and Error Order
• Error proportional to hn called 

nth order error
• Reducing step size by a 

factor of a reduces nth order 
error by an

• Second derivative example
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First Derivative Expressions
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Roundoff Error
• Possible in derivative expressions from 

subtracting close differences
• Example f(x) = ex: f’(x)  (ex+h – ex-h)/(2h) 

and error at x = 1 is (e1+h – e1-h)/(2h) - e
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Figure 2-1. Effect of Step Size on Error
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Numerical ODE Solutions

• The initial value problem

• Euler method as a prototype for the 
general algorithm

• Local and global errors

• More accurate methods

• Step-size control for error control

• Applications to systems of equations
– Reduce higher-order equations to a system 

of equations
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The Initial Value Problem
• dy/dx = f(x,y) (known f) with y(x0) = y0

• Basic numerical approach
– Use a finite difference grid: xi+1 – xi = h
– Replace derivative by finite-difference 

approximation: dy/dx  (yi+1 – yi) / (xi+1 – xi) 
= (yi+1 – yi) / h

– Derive a formula to compute favg the 
average value of f(x,y) between xi and xi+1

– Replace dy/dx = f(x,y) by (yi+1 – yi) / h = favg

– Repeatedly compute yi+1 = yi + h favg
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Notation
• xi is the value of the independent 

variable at point i on the grid
– Determined from the user-selected value of 

step size (or a series of hi values)
– Can always specify exactly the 

independent variable’s value, xi

• yi is the value of the numerical solution 
at the point where x = xi

• fi is derivative value found from xi and 
the numerical value, yi.  I.e., fi = f(xi, yi)
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More Notation

• y(xi) is the exact value of y at x = xi

– Usually not known but notation is used in 
error analysis of algorithms

• f(xi,y(xi)) is the exact value of the 
derivative at x = xi

• e1 = y(x1) – y1 is the local truncation 
error
– This is error for one step of algorithm 

starting from known initial condition
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Local versus Global Error
• At the initial point, x, we know the solu-

tion, y, from given initial condition
• First step introduces some error
• Remaining steps have single step error 

plus previous accumulated error
• Ej = y(xj) – yj is global truncation error

– Difference between numerical and exact 
solution after several steps

– This is the error we want to control

17

Euler’s Method
• Simplest algorithm, example used for 

error analysis, not for practical use
• Define favg = f(xi, yi) = fi
• Euler’s method algorithm is yi+1 = yi + hfi

= yi + hf(xi, yi)
• Example dy/dx = x + y, y = 0 at x = 0 
• Choose h = 0.1
• We have x0 = 0, y0 = 0, f0 = x0 + y0 = 0,  

x1 = x0 + h = 0.1, y1 = y0 + hf0 = 0 + 0 = 0
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Euler Example Continued

• Next step is from x1 = 0.1 to x2 = 0.2
• f1 = x1 + y1 = 0.1 + 0 = 0.1
• y2 = y1 + hf1 = 0 + (.1)(.1) = .01
• Can continue in this fashion
• For dy/dx = x + y, we know the exact 

solution is y = (x0 + y0 + 1)ex-x
0 – x – 1

• For x0 = y0 = 0, y = ex – x – 1
• Look at application of Euler algorithm 

for a few steps and compute the error
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Euler Example

xi yi fi f(xi,y(xi)) y(xi) E(xi)

0 0 0 0 0 0

.1 0 .1 .1052 .0052 .0052

.2 .01 .21 .2214 .0214 .0114

.3 .031 .331 .3499 .04986 .01886

.4 .0641 .4641 .4918 .091825 .027725
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Euler Example Plot
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Error Propagation

• Behavior of Euler algorithm is typical of 
all algorithms for numerical solutions

• Error grows at each step

• We usually do not know this global 
error, but we would like to control it

• Look at local error for Euler algorithm

• Then discuss general relationship 
between local and global error
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Taylor Series to Get Error

• Expand y(x) in Taylor series about x = a
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• In ODE notation, dy/dx|0 = f(x0, y(x0))
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Local Euler Error

• Result of Taylor series on last chart
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• This is only the Euler algorithm for the 
first step when we know f(x0,y(x0))

• This gives the local truncation error
• Local truncation error for Euler algorithm 

is second order

Euler Algorithm Truncation Error
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Global Error

• We will show that a local error of order 
n, has a global error of order n-1

• To show this consider the global error at 
x = x0 + kh after k algorithm steps
– Is approximately k times the local error

– If local error is O(hn)  Ahn, approximate 
global error after k steps is k O(hn)  kAhn

– A new step size, h/r, takes kr steps to get to 
the same x value
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Global Error Concluded

• Compare error for same x = kh with 
step sizes h and h/r

• Ex=kh(h)  kAhn

• Ex=kh(h/r)  krA(h/r)n
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• When we reduce the step size by a 
factor of 1/r we reduce the error by a 
factor of 1/rn-1; this is the behavior of 
an algorithm whose error is order n-1
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Euler Local and Global Error

• Previously showed Euler algorithm to 
have second order local error

• Should have first order global error

• Results for previous Euler example at x 
= 1 with different step sizes

Step size First step Final error
h = 0.1 5.17x10-3 1.25 x10-1

h = 0.01 5.02 x10-5 1.35 x10-2

h = 0.001 5.00 x10-7 1.36 x10-3
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Better Algorithms
• Seek high accuracy with low 

computational work
• Could improve Euler accuracy by 

cutting step size, but this is not efficient
• Use other algorithms that have higher 

order errors
• Runge-Kutta methods commonly used

– This is a class of methods that use several 
derivative evaluations per step
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Second-order Runge Kutta

• Huen’s method

• Modified Euler method
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Fourth-order Runge Kutta

• Uses four derivative evaluations per step
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Comparison of Methods
• Look at Euler, Heun, Modified Euler and 

fourth-order Runge-Kutta 
• Solve dy/dx = e-y-x with y(0) = 1
• Compare numerical values to exact 

solution y = ln( ey
0 + e-x

0 – e-x)
• Look at errors in the methods at x = 1 

as a function of step size
• Compare error propagation (increase in 

error as x increases)
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Error versus Step Size for Simple ODE Solvers
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Error Propagation in Solutions of ODEs
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Generic Runge-Kutta

• Generic formulas shown below
– Step size control based on  ∗
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Butcher Tableau

• Coefficients for generic Runge-Kutta
0

c2 a2,1

c3 a3,1 a3,2

c4 a4,1 a4,2 a4,3

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

cs as,1 as,2 as,3 … as,s-1

b1 b2 b3 … bs-1 bs

b1
* b2

* b3
* … bs-1

* bs
*
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Class Exercise

• Apply RK4 to y’ = x + y with y = 0 at x = 0
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Take 3 steps 
with h = 0.1.
Compare result 
to exact solution 
y = ex – x – 1 

Solution to Class Exercise I
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Solution to Class Exercise
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x y k1 k2 k3 k4 New y

0 0 0 0.005 0.00525 0.010525 0.005170833

0.1 0.005171 0.010517 0.016043 0.016319 0.022149 0.021402665

0.2 0.021403 0.022140 0.028247 0.028553 0.034996 0.049858704

0.3 0.049859 0.034986 0.041735 0.042073 0.049193 0.091824583

0.4 0.091825 0.049182 0.056642 0.057015 0.064884 0.148721144

0.5 0.148721 0.064872 0.073116 0.073528 0.082225 0.222118661

0.6 0.222119 0.082212 0.091322 0.091778 0.101390 0.313752553

0.7 0.313753 0.101375 0.111444 0.111947 0.122570 0.425540758

0.8 0.425541 0.122554 0.133682 0.134238 0.145978 0.559602923

0.9 0.559603 0.145960 0.158258 0.158873 0.171848 0.718281620

1.0 0.718282 0.171828 0.185420 0.186099 0.200438 0.904165794

Solution to Class Exercise
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